
WEB230: JavaScript 1
Module 7: Forms
Forms

Originally designed for the pre-JavaScript Web
Allow websites to send user-submitted information to a server
Assumes that interaction with the server always navigates to a new page
That has changed with modern JS but we won't be covering that

DOM
Form elements are part of the DOM

A number of properties and events that are not present on other elements
Make it possible to inspect and control form fields with JavaScript
Add new functionality to a form or use forms as building blocks in a JavaScript
application

Form fields
A web form consists of any number of input fields associated with a <form> tag.
HTML allows several different styles of fields:

simple on/off checkboxes
text input fields
drop-down menus
etc.

<input> Fields
Most form fields use the <input> tag

The type attribute selects the field’s style

Commonly used <input> types:

text A single-line text field
password Same as text but hides the text that is typed
checkbox An on/off switch
radio (Part of) a multiple-choice field
file Allows the user to choose a file from their computer

Form-less fields
Fields do not have to appear in a <form> tag
Form-less fields cannot be submitted (only a form can)
Can use them with JavaScript
JavaScript interface for such elements differs with the type of the element

Example

<p><input type="text" value="abc" /> (text)</p>
<p><input type="password" value="abc" /> (password)</p>
<p><input type="checkbox" checked /> (checkbox)</p>
<p>
 <input type="radio" value="A" name="choice" />
 <input type="radio" value="B" name="choice" checked />
 <input type="radio" value="C" name="choice" /> (radio)
</p>
<p><input type="file" /> (file)</p>

<textarea> Field
Multiline text field
Requires a matching </textarea> closing tag
uses the text content, instead of the value attribute, as starting text

<textarea>
one
two
three
</textarea>

<select> Field
Used to create a field that allows the user to select from a number of predefined options
Whenever the value of a form field changes, it will fire a "change" event

<select>
 <option>Pancakes</option>
 <option>Pudding</option>
 <option>Ice cream</option>
</select>

Focus
Form fields can get keyboard focus
When clicked or activated they become the currently active element and will get keyboard input
You can type into a text field only when it is focused
Other fields respond differently to keyboard events

<select> menu tries to move to the option that contains the text the user typed and
responds to the arrow keys by moving its selection up and down

Giving Focus
.focus() method moves focus to the DOM element it is called on
.blur() method removes focus
The value of document.activeElement corresponds to the currently focused element

Example

<input type="text" />
<script>
 document.querySelector('input').focus();
 console.log(document.activeElement.tagName);
 // → INPUT
 document.querySelector('input').blur();
 console.log(document.activeElement.tagName);
 // → BODY
</script>

autofocus Attribute
HTML provides the autofocus attribute
give that element focus when the page is opened

tabindex Attribute
User can move the focus through the document by pressing the TAB key
Can set the order in which elements receive focus with the tabindex attribute
The following example document will let the focus jump from the text input to the OK button,
rather than going through the help link first:

<input type="text" tabindex="1" /> (help)
<button onclick="console.log('ok')" tabindex="2">OK</button>

Most types of HTML elements cannot be focused
make it focusable by adding a tabindex attribute

tabindex="-1" makes tabbing skip over an element

Disabled fields
Form fields can be disabled through their disabled attribute
It is a boolean attribute (can be specified without value)

<button>I'm all right</button> <button disabled>I'm out</button>

Disabled fields cannot be focused or changed
Browsers display them as gray and faded

The Form as a Whole
Fields contained in a <form> element will have a form property

linking back to the form’s DOM element
The <form> element has a property called elements

contains an array-like collection of the fields inside it
The name attribute of a form field determines the way its value will be identified when the form
is submitted
Also used as a property name on the form’s elements property

acts both as an array (accessible by number) and an object (accessible by name)

Example

<form action="example/submit.html">
 Name: <input type="text" name="name" />

 Password: <input type="password" name="password" />

 <button type="submit">Log in</button>
</form>

<script>
 let form = document.querySelector('form');
 console.log(form.elements[1].type);
 // → password
 console.log(form.elements.password.type);
 // → password
 console.log(form.elements.name.form === form);
 // → true
</script>

Submit Button
A button with type="submit" will cause the form to be submitted
Pressing ENTER when a form field is focused has the same effect
Before that happens, a "submit" event is fired
You can handle this event with JavaScript and prevent this default behavior by calling
.preventDefault() on the event object

Example

<form action="example/submit.html">
 Value: <input type="text" name="value" />
 <button type="submit">Save</button>
</form>
<script>
 let form = document.querySelector('form');
 form.addEventListener('submit', (event) => {
 console.log('Saving value', form.elements.value.value);
 event.preventDefault();
 });
</script>

Intercepting submit Events
Why intercept the submit event?

Form validation - verify that the values make sense and immediately show an error message
Can disable submitting the form and have our program handle the input

Text fields

Fields that contain text such as <input type="text">, <textarea>, etc, share a common interface
These DOM elements have a value property that holds their current content as a string
Setting this property to another string changes the field’s content

selectionStart and selectionEnd
Provide information about the cursor and selection in the text
When nothing is selected, these two properties hold the same number, indicating the position of
the cursor
0 indicates the start of the text, and 10 indicates the cursor is after the 10th character
When part of the field is selected, the two properties will differ, giving us the start and end of the
selected text.
These properties may also be written to

Example
Imagine you are writing an article about Khasekhemwy but have some trouble spelling his name. The
following code wires up a <textarea> tag with an event handler that, when you press F2, inserts the
string “Khasekhemwy” for you.

<textarea></textarea>
<script>
 let textarea = document.querySelector('textarea');
 textarea.addEventListener('keydown', (event) => {
 if (event.key === 'F2') {
 replaceSelection(textarea, 'Khasekhemwy');
 event.preventDefault();
 }
 });
 function replaceSelection(field, word) {
 let from = field.selectionStart,
 to = field.selectionEnd;
 field.value = field.value.slice(0, from) + word + field.value.slice(to);
 field.selectionStart = from + word.length; // Put the cursor after the word
 field.selectionEnd = from + word.length;
 }
</script>

Explanation of Example
replaceSelection

replaces the currently selected part of a text field with the given word an
then moves the cursor after that word

The keydown event fires when a key is pressed

change Event
The change event for a text field fires when the field loses focus after its content was changed

To respond immediately to changes in a text field, you should register a handler for the input
event

fires every time the user types a character, deletes text, or otherwise changes the
field’s content

Counter Example
The following example shows a text field and a counter displaying the current length of the text in the
field:

<input type="text" /> length: 0
<script>
 let text = document.querySelector('input');
 let output = document.querySelector('#length');
 text.addEventListener('input', () => {
 output.textContent = text.value.length;
 });
</script>

Checkboxes and Radio Buttons
A checkbox field is a binary toggle
Get value from checked property - Boolean value

<label> <input type="checkbox" id="purple" /> Make this page purple </label>
<script>
 let checkbox = document.querySelector('#purple');
 checkbox.addEventListener('change', () => {
 document.body.style.background = checkbox.checked ? 'mediumpurple' : '';
 });
</script>

<label> Tag
Associates a piece of document with an input field
Clicking anywhere on the label will activate the field

text field - focuses it
checkbox or radio button - toggles its value

Radio Buttons
A radio button is similar to a checkbox
implicitly linked to other radio buttons with the same name
only one of them can be active at any time

Example

Color:
<label> <input type="radio" name="color" value="orange" /> Orange </label>
<label> <input type="radio" name="color" value="lightgreen" /> Green </label>
<label> <input type="radio" name="color" value="lightblue" /> Blue </label>
<script>
 let buttons = document.querySelectorAll('[name=color]');
 for (let button of buttons) {
 button.addEventListener('change', () => {
 document.body.style.background = button.value;
 });
 }
</script>

select fields
Conceptually similar to radio buttons

allow the user to choose from a set of options
appearance of a <select> tag is determined by browser

multiple Attribute
Select fields variant that is more like a list of checkboxes
With multiple attribute, a <select> tag will allow the user to select any number of options

select field Value
Each <option> tag has a value

This value can be defined with a value attribute
When not given, the text inside the option will count as its value

The value property of a <select> element reflects the currently selected option

option Tag
The <option> tags can be accessed as an array-like object using options property
Each option has a bolean property called selected

Indicates whether that option is currently selected
Can also be written to select or deselect an option

Example
Hold control (or command on a Mac) to select multiple options.

<select multiple>
 <option value="1">0001</option>
 <option value="2">0010</option>
 <option value="4">0100</option>
 <option value="8">1000</option>
</select>
= 0
<script>
 let select = document.querySelector('select');
 let output = document.querySelector('#output');
 select.addEventListener('change', () => {
 let number = 0;
 for (let option of select.options) {
 if (option.selected) {
 number += Number(option.value);
 }
 }
 output.textContent = number;
 });
</script>

file Field
file field was designed to upload files from the user
Also provides a way to read such files from JavaScript programs
The field acts as a gatekeeper

It gives the browser permission to read the file
A file field is a button labeled with “Choose File” or “Browse”, with information about the chosen
file next to it

Example

<input type="file" />
<script>
 let input = document.querySelector('input');
 input.addEventListener('change', () => {
 if (input.files.length > 0) {
 let file = input.files[0];
 console.log('You chose', file.name);
 if (file.type) console.log('It has type', file.type);
 }
 });
</script>

file field Properties
.files - an array-like object containing the files chosen in the field

It is initially empty
Also support a multiple attribute, which makes it possible to select multiple files

Objects in files have properties such as name, size, and type

Does not have is a property that contains the content of the file

Getting at that is a little more involved

Storing Data Client-Side
localStorage object is used to store data in a way that survives page reloads
Allows you to store string values under names

Adding items to localstorage
Add items with localStorage.setItem(name, value)
name and value are strings

Reading items from localstorage
Read items with localStorage.getItem(name)
name is a strings
Returns a string with the value

Removing items from localstorage
Remains in the browser until it is overwritten

It can be removed with localStorage.removeItem(name)
Or if the user clears their local data

Example

localStorage.setItem('username', 'marijn');
console.log(localStorage.getItem('username'));
// → marijn
localStorage.removeItem('username');

localstorage Details
Can only store strings
Sites from different domains get different storage compartments
A website can only read its own data
Limit to the data stored per site

Prevents using too much space

