
WEB230: JavaScript 1
Module 6: Handling Events

Events
events are interactions with our page
often initiated by the user
we can't predict when they will happen

Event Handlers
JavaScript code that runs when an event occurs
written as a function
this function is passed to a method

Events and DOM Nodes
every DOM Element node can have events associated with it
use .addEventListener()
first argument is the event name such as 'click'
second argument is a function (the event handler)

const button = document.querySelector('button');
button.addEventListener('click', function() {
 alert('Button clicked.');
});

Depricated Ways to add Event Handlers
There are older ways to add event handlers
.onclick property on a selected element
onclick="" attribute in HTML
JS properties and HTML attributes exist for other events

eg onload, onmouseover, onkeydown, etc.
DO NOT USE THESE EVER!
always use .addEventListener()

Deleting an Event Handler
use a named function
this provides a function reference that we can pass to .removeEventListener()

const button = document.querySelector('button');
function once() {
 alert('Done.');
 button.removeEventListener('click', once);
}
button.addEventListener('click', once);

The event Object
event handlers can accept a parameter called the event object
this object has information about the event

for example, which element was clicked on
which button or key was pressed

properties and methods vary depending on the type of event
this parameter is usually called event or simply e

Key Events
keydown and keyup events
keydown will repeat if held
event.key holds a string with the value that the key would type
boolean properties for modifier keys:

event.shiftKey
event.ctrlKey
event.altKey
event.metaKey (Windows key or Mac Command key)

event occurs on element that has focus (or document.body)
if you want to capture all keystrokes, use window.addEventListener()

window. is optional since it is the global object
Note: the keypress event is depricated

Key Event Properties
event.key (String) The key value of the key represented by the event. If the value has a printed
representation, this value is that character (Eg. "a"). Otherwise, it describes the key (Eg.
"Escape").

event.code (String) Holds a string that identifies the physical key being pressed. The value is
not affected by the current keyboard layout or modifier state, so a particular key will always
return the same value.

there are other depricated properties that should be avoided

window.addEventListener('keydown', function(event) {
 console.log('Key pressed:', event.key);
});

event.repeat (Boolean) true if the key is being held down such that it is automatically repeating
can be used to avoid repeatedly running the event handler

window.addEventListener('keydown', function(event) {
 if (event.repeat) { return; }
 console.log('Key pressed:', event.key);
});

Mouse Clicks

mousedown, mouseup, click, and dblclick events
event.clientX and event.clientY properties give exact location

Mouse Button Event Order

1. mousedown
2. mouseup
3. click
4. dblclick - if applicable

dblclick will repeat the previous three twice

event.button takes into account user customization
0: Main button pressed, usually the left button or the un-initialized state
1: Auxiliary button pressed, usually the wheel button or the middle button (if present)
2: Secondary button pressed, usually the right button
3: Fourth button, typically the Browser Back button
4: Fifth button, typically the Browser Forward button

Mouse Motion
mousemove event every time the mouse moves
mouseover or mouseout event equivalent to CSS :hover

Scroll Events
scroll event when page scrolls
fired every time the page is scrolled
window.scrollX and window.scrollY for scroll position

Focus Events
focus and blur
when an element is selected it is a focus event
when it loses focus a blur event is fired
most often used with form fields
does not propogate

Load Event
load event fires on the window object when the window finishes loading the page
often used to schedule initialization actions that require the DOM
element that load external files, such as images, also have a load event
Note: window load is no longer required since the defer attribute was added for the script tag

Timers
setTimeout to run a function after an amount of time
schedules a function to be called in a specified amount of time
clearTimeout can be used to cancel it
setInterval and clearInterval is similar but repeats every specified time interval

const button = document.querySelector('button');
const list = document.querySelector('ul');
let interval;
button.addEventListener('click', function(event){
 if(interval) {
 clearInterval(interval);
 } else {
 interval = setInterval(function(){
 let item = document.createElement('li');
 item.textContent = 'New item';
 list.appendChild(item);
 },1000);
 }
});

Script Execution Timeline
no two scripts can run at the same time
each peice of code (often functions) will wait for others to finish
web workers (not covered in this course) provide a way to do something while other things run

Propagation
if an event occurs on a child element it will trigger the event handler on the parent element
if both have handlers the more specific one runs first
event.stopPropogation() method on the event object can stop this

Delegation
an event handler can be placed on the parent element to handle the events on child elements

target Property
most events have an event.target property
this is the element that the event occurred on
often used to delegate event handling to parent element

Default Actions
some element have default actions

such as a form being submitted to a server or a link being followed
the event handler runs before the default action
event.preventDefault() method can stop the default action

Summary
event handlers make it possible to detect and react to external events
each event has a type - eg. 'click'
events propagate to their parent elements

event.stopPropagation()
some elements have default actions

event.preventDefault()
only one piece of JavaScript can run at once

Reference
MDN Events (https://developer.mozilla.org/en-US/docs/Web/Events)

https://developer.mozilla.org/en-US/docs/Web/Events

