WEB230: JavaScript 1
Module 6: Handling Events

Events

e events are interactions with our page
o often initiated by the user
e we can't predict when they will happen

Event Handlers

e JavaScript code that runs when an event occurs
e written as a function
¢ this function is passed to a method

Events and DOM Nodes

e every DOM Element node can have events associated with it
e use .addEventListener()

o first argument is the event name such as 'click’

e second argument is a function (the event handler)

const button = document.querySelector('button’);
button.addEventListener('click’, function() {
alert('Button clicked.');

D;

Depricated Ways to add Event Handlers

e There are older ways to add event handlers

e .onclick property on a selected element

e onclick="" attribute in HTML

e JS properties and HTML attributes exist for other events
o eg onload, onmouseover, onkeydown, etc.

e DO NOT USE THESE EVER!

e always use .addEventListener()

Deleting an Event Handler

e use a named function
o this provides a function reference that we can pass to .removeEventListener()

const button = document.querySelector('button’);
function once() {

alert('Done.");

button.removeEventListener('click', once);

}

button.addEventListener('click', once);



The event Object

e event handlers can accept a parameter called the event object
e this object has information about the event
o for example, which element was clicked on
o which button or key was pressed
e properties and methods vary depending on the type of event
o this parameter is usually called event or simply e

Key Events

e keydown and keyup events
e keydown will repeat if held
e event.key holds a string with the value that the key would type
e boolean properties for modifier keys:
o event.shiftKey
o event.ctriKey
o event.altKey
o event.metaKey (Windows key or Mac Command key)

e event occurs on element that has focus (or document.body)

e if you want to capture all keystrokes, use window.addEventListener()
o window. is optional since it is the global object

e Note: the keypress event is depricated

Key Event Properties

e event.key (String) The key value of the key represented by the event. If the value has a printed
representation, this value is that character (Eg. "a"). Otherwise, it describes the key (Eg.
"Escape").

¢ event.code (String) Holds a string that identifies the physical key being pressed. The value is
not affected by the current keyboard layout or modifier state, so a particular key will always
return the same value.

o there are other depricated properties that should be avoided

window.addEventListener('keydown', function(event) {
console.log('Key pressed:', event.key);

D;

e event.repeat (Boolean) true if the key is being held down such that it is automatically repeating
o can be used to avoid repeatedly running the event handler

window.addEventListener('keydown', function(event) {
if (event.repeat) { return; }
console.log('Key pressed:', event.key);

s

Mouse Clicks



e mousedown, mouseup, click, and dblclick events
e event.clientX and event.clientY properties give exact location

Mouse Button Event Order

mousedown
mouseup

click

dblclick - if applicable

o~

o dbilclick will repeat the previous three twice

e event.button takes into account user customization
o 0: Main button pressed, usually the left button or the un-initialized state
o 1: Auxiliary button pressed, usually the wheel button or the middle button (if present)
o 2: Secondary button pressed, usually the right button
o 3: Fourth button, typically the Browser Back button
o 4: Fifth button, typically the Browser Forward button

Mouse Motion

e mousemove event every time the mouse moves
e mouseover or mouseout event equivalent to CSS :hover

Scroll Events

¢ scroll event when page scrolls
o fired every time the page is scrolled
e window.scrollX and window.scrollY for scroll position

Focus Events

e focus and blur

e when an element is selected it is a focus event
e when it loses focus a blur event is fired

e most often used with form fields

e does not propogate

Load Event

¢ load event fires on the window object when the window finishes loading the page

o often used to schedule initialization actions that require the DOM

¢ element that load external files, such as images, also have a load event

e Note: window load is no longer required since the defer attribute was added for the script tag

Timers

e setTimeout to run a function after an amount of time

e schedules a function to be called in a specified amount of time

e clearTimeout can be used to cancel it

¢ setinterval and clearlnterval is similar but repeats every specified time interval



const button = document.querySelector('button’);
const list = document.querySelector('ul’);
let interval;
button.addEventListener('click’, function(event){
if(interval) {
clearinterval(interval);
}else {
interval = setinterval(function(){
let item = document.createElement('li");
item.textContent = 'New item’;
list.appendChild(item);
},1000);
}
3

Script Execution Timeline

e no two scripts can run at the same time
e each peice of code (often functions) will wait for others to finish
e web workers (not covered in this course) provide a way to do something while other things run

Propagation

e if an event occurs on a child element it will trigger the event handler on the parent element
¢ if both have handlers the more specific one runs first
e event.stopPropogation() method on the event object can stop this

Delegation
e an event handler can be placed on the parent element to handle the events on child elements

target Property

e most events have an event.target property
e this is the element that the event occurred on
o often used to delegate event handling to parent element

Default Actions

e some element have default actions

o such as a form being submitted to a server or a link being followed
e the event handler runs before the default action
e event.preventDefault() method can stop the default action

Summary

e event handlers make it possible to detect and react to external events
e each event has a type - eg. 'click’
e events propagate to their parent elements



o event.stopPropagation()
e some elements have default actions
o event.preventDefault()
e only one piece of JavaScript can run at once

Reference

¢ MDN Events (https://developer.mozilla.org/en-US/docs/Web/Events)



https://developer.mozilla.org/en-US/docs/Web/Events

