
WEB230: JavaScript 1
Module 3: Data Structures

Terminology
We use three kinds of brackets in JavaScript. The names of these are often confusing.

() - Parentheses
in arithmetic these are called brackets

[] - Brackets (Square Brackets)
{} - Braces (Curly Braces)

Data Sets (Arrays)
Array, set of data
Written between square brackets
Values are comma separated
Spaces inside square brackets are optional
To access a value use the variable name followed by square brackets enclosing the index
The first index is 0 (not 1)

let listOfNumbers = [2, 3, 5, 7, 11];

console.log(listOfNumbers[2]); // 5

console.log(listOfNumbers[2 - 1]); // 3

Properties
Access "Property" of a value
Almost all values have properties

except null and undefined
These properties can contain values or functions
Access properties with dot or square brackets

value.x - x is the name of the property
value[x] - x can be an expression

let myName = 'Billy Eilish';
let propName = 'length';
console.log(myName.length);
console.log(myName['length']);
console.log(myName[propName]);

Methods
String and Array objects contain a number of properties that contain functions

let doh = "Doh";

console.log(typeof doh.toUpperCase);
// → function

console.log(doh.toUpperCase());
// → DOH

Every string has the toUpperCase and toLowerCase properties
Properties that contain a function value are called Methods
the push method allows us to add values to the end of an array
the pop method does the opposite and removes the value at the end
an array of strings can be flattened to a single string with the join method

let mack = [];

mack.push("Mack");
mack.push("the", "Knife");
console.log(mack);
// → ["Mack", "the", "Knife"]

console.log(mack.join(" "));
// Mack the Knife

console.log(mack.pop());
// → Knife

console.log(mack);
// → ["Mack", "the"]

Objects
Values of the type object are arbitrary collections of properties
We can add or remove properties as we please
One way to create them is using brace notation (curly braces)

// Object representing my car
let myCar = {
 // properties describing my car
 make: "Ford",
 model: "Mustang",
 year: 1969
};

console.log(myCar.make);
// → "Ford"

console.log(myCar.year);
// → 1969

console.log(myCar.color);
// → undefined

the delete operator is a unary operator that will remove a property from an object

delete myCar.year;
console.log(myCar.year);
// → undefined

the in operator is a binary operator that will tell you if a property exists in an object

console.log("color" in car); // → false

Mutability
With objects, the content of a value can be modified by changing its properties

let object1 = {value: 10};
let object2 = object1;
let object3 = {value: 10};

console.log(object1 === object2);// true
console.log(object1 === object3);// false

object1.value = 15;
console.log(object2.value);// 15
console.log(object3.value);// 10

The object1 and object2 variables grasp the same object
changing object1 also changes the value of object2

The variable object3 points to a different object
which initially contains the same properties as object1 but lives a separate life

When comparing objects, JavaScript’s === (or ==) operator
Will return true only if both objects are the same object
Comparing different objects will return false, even if they have identical contents

Array Loops
We can loop through the elements of an array like this:

const myPets = ['dog', 'cat', 'rat', 'snake'];
for(let i=0; i<myPets.length; i++) {
 console.log(myPets[i]);
}

for...in Loop
This is such a common task that some special loops were created, like the for...in loop:

const myPets = ['dog', 'cat', 'rat', 'snake'];
for(let i in myPets) {
 console.log(myPets[i]);
}

Note: the for...in loop does not guarrente that the array will be processed in order.

for...in Loop on Objects
The for...in loop was designed for objects.

let car = {
 make: "Ford",
 model: "Mustang",
 year: 1967
}

for(let prop in car){
 console.log(prop, car[prop]);
}

for...of Loop
The for...of loop was designed specifically for arrays:

const myPets = ['dog', 'cat', 'rat', 'snake'];
for(let pet of myPets) {
 console.log(pet);
}

Note: The for...of loop will access array elements in order.

Further Arrayology

We also have methods shift and unshift to add and remove from the beginning of an array

let todoList = ["homework"];
let task = "walk dog";

// push a task onto the end of the todo list
todoList.push(task);

// get and remove the first element
todoList.shift();

// add a task to the front of the list
todoList.unshift(task);

indexOf finds the position of a value in an array
lastIndexOf begins searching at the end
Both of these can accept an optional second argument that indicates where to start searching

let list = [1,2,3,4,3,2,1];

list.indexOf(3); // 2

list.lastIndexOf(3); // 4

list.indexOf(3,3); // 4

.slice() will create a new array with a segment of the array copied
takes a start and end index
When the end index is not given, it will go to the end of the array
Negative arguments will count from the end of the array

let list = [1,2,3,4,3,2,1];
list.slice(2, 4); // → [3, 4]

list.slice(4); // → [3, 2, 1]

concat can be used to glue arrays together
Similar to what the + operator does for strings

let letters = ["a", "b", "c", "d", "e"];
let numbers = [1,2,3,4,3,2,1];

letters.concat(numbers);
// → ["a", "b", "c", "d", "e", 1, 2, 3, 4, 3, 2, 1]

Strings and Their Properties
Values of type string, number, and boolean are immutable

can't be changed in place

strings have a number of methods

For example slice, indexOf, and trim

let nut = "coconuts";

nut.slice(4, 7); // → "nut"
nut.indexOf("u"); // → 5

trim() removes whitespace from the start and end of a string
whitespace = space, newline, tab, and similar

let nut = " \t coconuts \t \n ";
nut.trim();
// → "coconuts"

charAt() return an individual character
Or use square brackets like you’d do for an array

let string = "abc";

string.length; // → 3

string.charAt(0); // → a

string[1]; // → b

Rest Parameters
Sometimes it is useful for functions to take any number of arguments.

function max(...numbers) {
 let result = -Infinity;
 for (let number of numbers) {
 if (number > result) {
 result = number;
 }
 }
 return result;
}
console.log(max(4, 1, 9, -2));
// → 9

This is called a "Rest Parameter"
All the values are assigned to an Array with the given name

Spread Operator

Similarly, we can spread the values of an array into individual values, in an array:

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);
// → ["will", "never", "fully", "understand"]

Or in a function call:

let nums = [4,56,7,6,54,43,4,6,7,7];
let max = Math.max(...nums);

The Math Object
The Math object is a container to group a bunch of related functionality
There is only one Math object
It provides a namespace so that all these functions and values do not have to be global
variables

Math.max(2, 4); // → 4
Math.min(2, 4); // → 2
Math.sqrt(4); // → 2

Math.PI; // → 3.141592653589793
Math.E; // → 2.718281828459045

// produce a random number between 0 and 1
Math.random(); // → 0.36993729369714856

// produce a whole random number between 1 and 10 inclusive
Math.floor(Math.random() * 10 + 1); // → 4

Destructuring

let person = {name: "Faraji", age: 23, gender: 'M'};
let {name} = person;
console.log(name);
// → Faraji

Works with arrays too:

let myPets = ['dog', 'cat', 'gerble', 'pig'];
let [firstPet, secondPet] = myPets;
console.log(firstPet, secondPet);

JSON
Often we want to store data to a file or send it to another computer
We can't send JavaScript arrays or objects as is

JSON is a text notation for JavaScript values

{
 "make": "Ford",
 "model": "Edge",
 "year": 2012
}

JavaScript has functions JSON.stringify and JSON.parse to convert to and from JSON
JSON.parse - converts a JSON string to a JavaScript object
JSON.stringify - converts a JavaScript object to a JSON string

Summary
Objects and arrays (which are a specific kind of object) provide ways to group several values
into a single value
Most values in JavaScript have properties, the exceptions being null and undefined
Properties are accessed using dot notation or square bracket notation

value.propName
value["propName"]

Objects tend to use names for their properties and store a fixed set of them
Arrays usually contain varying numbers of conceptually identical values and use numbers as
the names of their properties (starting from 0)
Methods are functions that live in properties and usually act on the value they are a property of

