WEB230: JavaScript 1

Module 3: Data Structures

Terminology
We use three kinds of brackets in JavaScript. The names of these are often confusing.

e () - Parentheses

o in arithmetic these are called brackets
e [] - Brackets (Square Brackets)
e {}- Braces (Curly Braces)

Data Sets (Arrays)

e Array, set of data

o Written between square brackets

e Values are comma separated

e Spaces inside square brackets are optional

e To access a value use the variable name followed by square brackets enclosing the index
e The first index is 0 (not 1)

let listOfNumbers = [2, 3, 5, 7, 11];
console.log(listOfNumbers[2]); // 5

console.log(listOfNumbers[2 - 1]); / 3

Properties

e Access "Property" of a value
e Almost all values have properties
o except null and undefined
e These properties can contain values or functions
e Access properties with dot or square brackets
o value.x - x is the name of the property
o value[x] - x can be an expression

let myName = 'Billy Eilish';

let propName = 'length’;
console.log(myName.length);
console.log(myName['length']);
console.log(myName[propName]);

Methods

e String and Array objects contain a number of properties that contain functions

let doh ="Doh";

console.log(typeof doh.toUpperCase);
/I = function

console.log(doh.toUpperCase());
// - DOH

e Every string has the toUpperCase and toLowerCase properties

e Properties that contain a function value are called Methods

¢ the push method allows us to add values to the end of an array

¢ the pop method does the opposite and removes the value at the end

e an array of strings can be flattened to a single string with the join method

let mack = [];

mack.push("Mack");
mack.push("the", "Knife");
console.log(mack);

/I = ["Mack", "the", "Knife"]

console.log(mack.join(""));
/I Mack the Knife

console.log(mack.pop());
/I = Knife

console.log(mack);
/Il = ["Mack", "the"]

Objects

e Values of the type object are arbitrary collections of properties
e We can add or remove properties as we please
¢ One way to create them is using brace notation (curly braces)

/I Object representing my car
let myCar = {
/I properties describing my car
make: "Ford",
model: "Mustang",
year: 1969

¢

console.log(myCar.make);
/l = "Ford"

console.log(myCar.year);
/I = 1969

console.log(myCar.color);
/I = undefined

o the delete operator is a unary operator that will remove a property from an object

delete myCar.year;
console.log(myCar.year);
/I = undefined

e the in operator is a binary operator that will tell you if a property exists in an object

console.log("color" in car); / — false

Mutability

e With objects, the content of a value can be modified by changing its properties

let object1 = {value: 10};
let object2 = object1;
let object3 = {value: 10};

console.log(object1 === object2);// true
console.log(object1 === object3);// false

objecti.value = 15;
console.log(object2.value);// 15
console.log(object3.value);// 10

e The object1 and object2 variables grasp the same object
o changing object1 also changes the value of object2
e The variable object3 points to a different object
o which initially contains the same properties as object1 but lives a separate life

e When comparing objects, JavaScript’s === (or ==) operator
o Will return true only if both objects are the same object

o Comparing different objects will return false, even if they have identical contents

Array Loops

We can loop through the elements of an array like this:
const myPets = ['dog', 'cat', 'rat', 'snake'];

for(let i=0; ixmyPets.length; i++) {

console.log(myPets[i]);

}

for...in Loop

This is such a common task that some special loops were created, like the for...in loop:
const myPets = ['dog’, 'cat’, 'rat', 'snake'];
for(let i in myPets) {

console.log(myPets[i]);

}

Note: the for...in loop does not guarrente that the array will be processed in order.

for...in Loop on Objects

The for...in loop was designed for objects.

let car ={
make: "Ford",
model: "Mustang",
year: 1967

}

for(let prop in car){
console.log(prop, car[prop]);
}
for...of Loop
The for...of loop was designed specifically for arrays:
const myPets = ['dog’, 'cat’, 'rat', 'snake'];
for(let pet of myPets) {
console.log(pet);

}

Note: The for...of loop will access array elements in order.

Further Arrayology

e We also have methods shift and unshift to add and remove from the beginning of an array

let todoList = ["homework"];
let task = "walk dog";

/l push a task onto the end of the todo list
todoList.push(task);

/I get and remove the first element
todoList.shift();

// add a task to the front of the list
todoList.unshift(task);

¢ indexOf finds the position of a value in an array
¢ lastindexOf begins searching at the end
e Both of these can accept an optional second argument that indicates where to start searching

let list = [1,2,3,4,3,2,1];
list.indexOf(3); // 2
list.lastindexOf(3); // 4

list.indexOf(3,3); // 4

.slice() will create a new array with a segment of the array copied
e takes a start and end index

e When the end index is not given, it will go to the end of the array
¢ Negative arguments will count from the end of the array

let list =[1,2,3,4,3,2,1];
list.slice(2, 4); // — [3, 4]

list.slice(4); // — [3, 2, 1]

e concat can be used to glue arrays together
e Similar to what the + operator does for strings

Iet Ietters - [llall, llbll, "C", Ildll, llell];
let numbers =[1,2,3,4,3,2,1];

letters.concat(numbers);
// — [Ilall’ |lbll, "C", |ldll, llell, 1, 2, 3’ 4’ 3, 2, 1]

Strings and Their Properties

e Values of type string, number, and boolean are immutable

o can't be changed in place
e strings have a number of methods

o For example slice, indexOf, and trim

let nut = "coconuts";

nut.slice(4, 7); // — "nut"
nut.indexOf("u"); // — 5

¢ trim() removes whitespace from the start and end of a string
o Wwhitespace = space, newline, tab, and similar

let nut=" Mt coconuts \t\n ";
nut.trim();
// = "coconuts"

e charAt() return an individual character
e Or use square brackets like you’d do for an array

let string = "abc";
string.length; / — 3
string.charAt(0); / — a
string[1]; / — b

Rest Parameters

e Sometimes it is useful for functions to take any number of arguments.

function max(...numbers) {
let result = -Infinity;
for (let number of numbers) {
if (number > result) {
result = number;

}
}

return result;

}

console.log(max(4, 1, 9, -2));
/[=9

e This is called a "Rest Parameter"
e All the values are assigned to an Array with the given name

Spread Operator

e Similarly, we can spread the values of an array into individual values, in an array:

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);
/= ["will", "never", "fully", "understand"]

Or in a function call:

let nums = [4,56,7,6,54,43,4,6,7,7];
let max = Math.max(...nums);

The Math Object

e The Math object is a container to group a bunch of related functionality

e There is only one Math object

¢ It provides a namespace so that all these functions and values do not have to be global
variables

Math.max(2, 4); // — 4
Math.min(2, 4); // — 2
Math.sqgrt(4); // — 2

Math.PI; // = 3.141592653589793
Math.E; // — 2.718281828459045

/[produce a random number between 0 and 1
Math.random(); // = 0.36993729369714856

/I produce a whole random number between 1 and 10 inclusive
Math.floor(Math.random() * 10 + 1); // — 4

Destructuring

let person = {name: "Faraji", age: 23, gender: 'M'};
let {name} = person;

console.log(name);

/[= Faraji

¢ Works with arrays too:

let myPets = ['dog', 'cat’, 'gerble’, 'pig];
let [firstPet, secondPet] = myPets;
console.log(firstPet, secondPet);

JSON

o Often we want to store data to a file or send it to another computer
e We can't send JavaScript arrays or objects as is

e JSON is a text notation for JavaScript values

{
"make": "Ford",
"model": "Edge",
"year": 2012
}
e JavaScript has functions JSON.stringify and JSON.parse to convert to and from JSON
o JSON.parse - converts a JSON string to a JavaScript object
o JSON.stringify - converts a JavaScript object to a JSON string
Summary

¢ Objects and arrays (which are a specific kind of object) provide ways to group several values
into a single value

e Most values in JavaScript have properties, the exceptions being null and undefined

e Properties are accessed using dot notation or square bracket notation

value.propName
value["propName"]

¢ Obijects tend to use names for their properties and store a fixed set of them

e Arrays usually contain varying numbers of conceptually identical values and use numbers as
the names of their properties (starting from 0)

e Methods are functions that live in properties and usually act on the value they are a property of

