
WEB230: JavaScript 1
Module 2: Functions
Defining a Function

A variable that refers to a function
function is a keyword
Functions have a set of parameters, in this case only x

let square = function(x) {
 return x * x;
};

let makeNoise = function() {
 console.log("Pling!");
};

square has one parameter
makeNoise has no parameters
square produces a value
makeNoise only has a side effect
A return statement sets the returned value and exits the function

Bindings and Scopes
Parameters behave like regular bindings (variables)

The value is set by the caller of the function
Variables created inside a function are local to the function

This is referred to as scope
Variables declared outside of any function are called global

They are visible throughout the program

Nested Scope
Function definitions can include functions
In this case, the scope can nest inside of another scope

const hummus = function(factor) {
 const ingredient = function(amount, unit, name) {
 let ingredientAmount = amount * factor;
 if (ingredientAmount > 1) {
 unit += "s";
 }
 console.log(`${ingredientAmount} ${unit} ${name}`);
 };
 ingredient(1, "can", "chickpeas");
 ingredient(0.25, "cup", "tahini");
 ingredient(0.25, "cup", "lemon juice");
 ingredient(1, "clove", "garlic");
 ingredient(2, "tablespoon", "olive oil");
 ingredient(0.5, "teaspoon", "cumin");
};

Functions as Values
Function values can do all the things that other values do

use in expression
pass it as an argument to another function

Variable that holds a function is still just a variable
can be redefined

Declaration Notation
Shorter way to set a function
Called a function declaration

console.log("The future says:", future());

function future() {
 return "We STILL have no flying cars.";
}

One subtle difference:
Function can be declared below the code that uses it

Arrow functions
Third way of declaring functions
Instead of the function keyword, it uses an arrow =>
The arrow comes after the list of parameters and is followed by the function’s body

const power = (base, exponent) => {
 let result = 1;
 for (let count = 0; count < exponent; count++) {
 result *= base;
 }
 return result;
};

When there is only one parameter name, you can omit the parentheses around the parameter
list
If the body is a single expression then you can omit the braces and that expression will be
returned

const square1 = (x) => { return x * x; };
const square2 = x => x * x;

Optional Arguments
You can call a function with too many or too few arguments
Unneeded arguments are ignored
Missing arguments are set to undefined
You can test for missing arguments

function power(base, exponent = 2) {
 let result = 1;
 for (let count = 0; count < exponent; count++) {
 result *= base;
 }
 return result;
}

console.log(power(4));
// → 16
console.log(power(2, 6));
// → 64

Growing Functions
Sometimes you obviously need a function
If a function name is easy to come up with it is probably a good case for a function
Keep functions simple

Functions and Side Effects
Two kinds of functions

Return a value
Have a side effect

Avoid doing both in the same function

pure functions
don't have side effects
don't use global variables that might change

