WEB230: JavaScript 1

Module 2: Functions

Defining a Function

e A variable that refers to a function
e function is a keyword
e Functions have a set of parameters, in this case only x

let square = function(x) {
return x * x;

5

let makeNoise = function() {
console.log("Pling!");

5

e square has one parameter

e makeNoise has no parameters

e square produces a value

e makeNoise only has a side effect

e A return statement sets the returned value and exits the function

Bindings and Scopes

e Parameters behave like regular bindings (variables)
o The value is set by the caller of the function

e Variables created inside a function are local to the function
o This is referred to as scope

e Variables declared outside of any function are called global
o They are visible throughout the program

Nested Scope

¢ Function definitions can include functions
¢ Inthis case, the scope can nest inside of another scope

const hummus = function(factor) {
const ingredient = function(amount, unit, name) {
let ingredientAmount = amount * factor;
if (ingredientAmount > 1) {
unit +="s";
}
console.log (" ${ingredientAmount} ${unit} ${name});
Ji
ingredient(1, "can", "chickpeas");
ingredient(0.25, "cup", "tahini");
ingredient(0.25, "cup", "lemon juice");
ingredient(1, "clove", "garlic");
ingredient(2, "tablespoon”, "olive oil");
ingredient(0.5, "teaspoon"”, "cumin");

%

Functions as Values

e Function values can do all the things that other values do
o use in expression
o pass it as an argument to another function

e Variable that holds a function is still just a variable
o can be redefined

Declaration Notation

e Shorter way to set a function
e Called a function declaration

console.log("The future says:", future());

function future() {
return "We STILL have no flying cars.";

}

¢ One subtle difference:
o Function can be declared below the code that uses it

Arrow functions

e Third way of declaring functions
¢ Instead of the function keyword, it uses an arrow =>
e The arrow comes after the list of parameters and is followed by the function’s body

const power = (base, exponent) => {
let result = 1;
for (let count = 0; count < exponent; count++) {
result *= base;

}
return result;
J5
e When there is only one parameter name, you can omit the parentheses around the parameter
list
o If the body is a single expression then you can omit the braces and that expression will be
returned

const squarel1 = (x) =>{ return x * x; };
const square2 = x => X * X;

Optional Arguments

e You can call a function with too many or too few arguments
Unneeded arguments are ignored

Missing arguments are set to undefined

You can test for missing arguments

function power(base, exponent = 2) {
let result = 1;
for (let count = 0; count < exponent; count++) {
result *= base;

}

return result;

console.log(power(4));

/[=16
console.log(power(2, 6));
/I = 64

Growing Functions

e Sometimes you obviously need a function
¢ If a function name is easy to come up with it is probably a good case for a function
e Keep functions simple

Functions and Side Effects

e Two kinds of functions
o Return a value
o Have a side effect
e Avoid doing both in the same function

e pure functions
o don't have side effects
o don't use global variables that might change

