
WEB230: JavaScript 1
Module 1B: Program Structure
Expressions

Expressions are bits of code that evaluate to something
Expressions can be combined

1
3+4
(3+4) * (5-2)

Statements
Statements should end in a semicolon (;)

1;
3+4;
(3+4) * (5-2);

Bindings
A variable is a named place to store a value

It is "Bound" to the name
The let keyword creates a new variable
Only use let once when creating the variable

let dog = "Fido";
dog = "Rex";

var and const
var is an older way to declare variables

now let is preferred
const declares variables that are "constant" meaning they cannot be assigned new values
more later

Binding Names
JavaScript has words that cannot be used for variable names
Some of these are keywords in JavaScript, some are reserved for future versions

break case catch class const continue debugger default delete do else enum export extends false
finally for function if implements import in instanceof interface let new null package private protected
public return static super switch this throw true try typeof var void while with yield

The Environment
collection of variables and their values that already exist
they are variables that are part of the language standard

allow access to the surrounding system

Functions
A function is a piece of program wrapped in a value
These variables have the type function and can be run:

alert("Good morning!");

Executing a function is called invoking or calling it

The console.log Function
console.log is a function that will display values
In web browsers there is a console where you can see these messages

console.log("JavaScript is fun so far!");

The period is not part of the name
more in chapter 4

Return Values
Writing text to the screen is a side effect
Some functions produce a value
When a function produces a value, it is said to return that value

Math.min(4,6,3,1); // returns 1

We will write functions in chapter 3

Prompt and Confirm
We can also ask the user to approve something
Returns a boolean

confirm("Are you sure?");

Or provide a value
Returns a string

prompt("How many would you like?", "4");

Control Flow
Statements can execute one after the other

let num = Number(prompt("Pick a number", ""));
alert ("Your number is the square root of " + num * num);

Each line runs in turn

Conditional Execution

Programs don't have to run in a linear fashion
An alternative is conditional execution

let num = Number(prompt("Pick a number", ""));

if (!isNaN(num)) {
 alert (" Your number is the square root of " + num * num);
}

While and do Loops
while and do loops repeat statements

let number = 0;
while (number <= 12) {
 console.log(number);
 number = number + 2;
}

Indenting Code
Indent code inside of blocks ({...})
Makes programs easier to read
The computer doesn't care
Tabs vs spaces!!! The never ending argument!

For Loops
Counter, test, and increment all in one

for (let num = 0; num <= 12; num = num + 2) {
 console.log(num);
}

Breaking out of a Loop
use the break statement to end a loop prematurely

for (let num = 0; num <= 12; num = num + 2) {
 if(num === 8) {
 break;
 }
 console.log(num);
}

there is also a continue statement that will end the interation but continue the loop

Updating Bindings Succinctly
We often update a variable base on its current value

counter = counter + 1;

JavaScript provides a shortcut:

counter += 1;

Or even:

counter++;

Dispatching on a Value With switch

switch (prompt("What is the weather like?")) {
 case "rainy":
 console.log("Remember to bring an umbrella.");
 break;
 case "sunny":
 console.log("Dress lightly.");
 case "cloudy":
 console.log("Go outside.");
 break;
 default:
 console.log("Unknown weather type!");
 break;
}

Capitalization
Variable names may not contain spaces
Often have more than one word

fuzzylittleturtle
fuzzy_little_turtle
FuzzyLittleTurtle
fuzzyLittleTurtle

Last one preferred in JavaScript
Called Camel Case

Comments
Two types of comments
Single line:

// Some note about the program

Multi-line:

/*
A longer note about the program
that goes on and on
*/

