
WEB230: JavaScript 1
Module 1A: Values, Types, and Operators

Values
Any small bit of data
Each value has a type

JavaScript has 6 types of values:
numbers
strings
booleans
objects
functions
undefined / null

Numbers
only one kind of number

13
9.81
2.998e8

Arithmetic Operators
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder (Modulus)
** Exponent

Arithmetic
JS has arithmetic operators

100 + 4 * 11

Special Numbers
3 special values considered numbers
don't behave like numbers - Don't trust these too much:

Infinity
-Infinity

If the operation results are not meaningful:
NaN - not a number

Strings
Represent text
Zero or more characters stored as a single value

"Mary's car is red."
'The monkey says "goodbye"'
`Back ticks are called "template literals"`

single or double quotes behave very much the same
— only difference is in which type of quote you need to escape

Strings Escaping
some special characters need a backslash

newline is "\n", tab is "\t"

"This is the first line\nAnd this is the second"

will result in:

This is the first line
And this is the second

if you need to display a special character use "\"

"A newline character is written like \"\\n\"."

will result in:

A newline character is written like "\n".

String Operator
There is only one:

+ Concatenation - Join two strings together

"Patch my boat " + "with chewing gum"

will result in:

"Patch my boat with chewing gum"

Template Literals
Backtick-quoted strings, called template literals, can do more than single or double quoted
strings:

span lines
embed other values

`Strings can
now span
lines`

an expression inside ${} will be evaluated, converted to a string, and included at that position

let number = 100;
console.log(`half of ${number} is ${number / 2}`);

displays:

half of 100 is 50

Unary Operators
operate on a single value
Some operators are words:

typeof - produces a string naming the type
Others:

- negate (number)
+ plus (number)
! not (bolean)

Boolean Values
has just two values
true or false

Comparison
> and < result in boolean values

5 > 2 // true
"abc" > "def" // false

>= Greater than or equal
<= Less than or equal
== Equal
!= Not Equal

Logical Operators
These work with boolean values

&& AND
|| OR
! NOT

Ternary Operator
takes 3 values

true ? 1 : 2 // 1
false ? 1 : 2 // 2

Empty Values
The absense of value
null
undefined
If something does not produce a meaningful result it will produce undefined
null has a slightly different meaning that we will see later

Automatic Type Conversion
JavaScript will do it's best to work with what you give it.
Sometimes it has to convert from one type to another
called type coercion

"one" + 2 // "one2"
"5" * 2 // 10

Truthy and Falsy
If a boolean value is expected
0, "", undefined, null, NaN are false
anything else is true

Precise Compare
Usually we want to make sure they are the same type too!
=== precisely equal (value and type)
!== precisely not equal
It is recommended to use these instead of == and !=

"2" == 2 // true
"2" === 2 // false

Short-circuiting of logical operators
logical operators && and ||
The second value is only evaluated if needed

true || console.log("Hello")

true && console.log("Hello")

