WEB230: JavaScript 1
Module 1A: Values, Types, and Operators

Values

e Any small bit of data
e Each value has a type

JavaScript has 6 types of values:

e numbers

e strings

e booleans

e oObjects

e functions

e undefined / null

Numbers

e only one kind of number

13
9.81
2.998e8

Arithmetic Operators

e + Addition

e - Subtraction

e * Multiplication

o / Division

e % Remainder (Modulus)
e ** Exponent

Arithmetic

e JS has arithmetic operators

100 + 4 * 11

Special Numbers

e 3 special values considered numbers

e don't behave like numbers - Don't trust these too much:
o Infinity
o -Infinity

o If the operation results are not meaningful:
o NaN - not a number

Strings

e Represent text
e Zero or more characters stored as a single value

"Mary's car is red."
"The monkey says "goodbye™
"Back ticks are called "template literals™

e single or double quotes behave very much the same
— only difference is in which type of quote you need to escape

Strings Escaping

e some special characters need a backslash
o newline is "\n", tab is "\t"

"This is the first line\nAnd this is the second"
will result in:

This is the first line
And this is the second

¢ if you need to display a special character use "\"
"A newline character is written like \"\n\"."
will result in:
A newline character is written like "\n".

String Operator

e There is only one:
o + Concatenation - Join two strings together

"Patch my boat " + "with chewing gum"
will result in:
"Patch my boat with chewing gum"

Template Literals

e Backtick-quoted strings, called template literals, can do more than single or double quoted
strings:
o span lines
o embed other values

“Strings can
now span
lines’
e an expression inside ${} will be evaluated, converted to a string, and included at that position
let number = 100;
console.log(half of ${number} is ${number / 2});
displays:

half of 100 is 50

Unary Operators

e oOperate on a single value
e Some operators are words:

o typeof - produces a string naming the type
e Others:

o - negate (number)
o + plus (number)
o ! not (bolean)

Boolean Values

e has just two values
e true or false

Comparison

e > and < result in boolean values

5>2 // true
"abc" > "def" // false

e >= Greater than or equal
e <= Less than or equal

o == Equal

e !=Not Equal

Logical Operators

These work with boolean values

e && AND
e IIOR
e INOT

Ternary Operator

o takes 3 values

true?1:2 //1
false ?1:2 // 2

Empty Values

e The absense of value

e null

e undefined

¢ If something does not produce a meaningful result it will produce undefined
¢ null has a slightly different meaning that we will see later

Automatic Type Conversion

e JavaScript will do it's best to work with what you give it.
e Sometimes it has to convert from one type to another
e called type coercion

"one" + 2 //"one2"
"5"*2 //10
Truthy and Falsy

¢ If a boolean value is expected
o 0, " undefined, null, NaN are false
e anything else is true

Precise Compare

e Usually we want to make sure they are the same type too!
e === precisely equal (value and type)

e !==precisely not equal

e Itis recommended to use these instead of == and !=

"2"==2 [/true
"2" === 2 //false

Short-circuiting of logical operators

e logical operators && and Il
e The second value is only evaluated if needed

true Il console.log("Hello")

true && console.log("Hello")

